Деление в различных системах счисления

Деление в различных системах счисления

Сложение в различных системах счисления

Таблицы сложения легко составить, используя Правило Счета.

Вычитание в различных системах счисления

Умножение в различных системах счисления

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Деление в различных системах счисления

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9468 — | 7450 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.

Вам необходимо определиться сколько чисел вам необходимо посчитать и выбрать это количество в графе количество чисел.

Далее Вам необходимо ввести каждое число и выбрать его систему счисления. Если в указанном списке Вы не нашли нужной СС, то выберите пункт другая и введите числом основание вашей системы счисления.

После ввода всех чисел и выбора арифметических операций нажмите кнопку рассчитать.

Поставить LIKE и поделиться ссылкой
  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.

Пример решения: 5436 7 — 1101 2
Пример состоит из двух чисел 5436 7 и 1101 2 где в первом 7 и втором 2 — это основания системы счисления.

Введем сначала 5436 7 в поле "число 1" без основания СС (то есть без 7) и укажем его систему в соответствующем поле — выбираем пункт другая и вводим 7. Результат на скришоте:

Теперь также введем число 11011 в двоичной системе счисления:

Далее выбираем в поле "операция" вычитание и указываем что расчет должен быть выполнен в десятичной СС. Если мы хотим чтобы результат расчета был в двоичной СС, то указываем это как на скриншоте:

Теперь нажимаем копку "Рассчитать" и смотрим результат:

Если хотите посмотреть ход решения, то нажмите ссылку "Показать как оно получилось"

Если Вам необходимо рассчитать более двух чисел то выберите нужное количество в пункте "Количество чисел" Максимум 7 чисел.
При расчете сначала выполняются операции деления и умножения затем сложения и вычитания.

Вы можете выполнять операции расчета деления столбиком.

Содержание урока:

12.3. Умножение чисел в системе счисления с основанием q
12.1. — 12.2. Сложение и вычитание чисел в системе счисления с основанием q 12.4. Деление чисел в системе счисления с основанием q
Читайте также:  Sven ms 302 черный

12.3. Умножение чисел в системе счисления с основанием q

Рассмотрите примеры таблиц умножения в троичной (табл. 3.5), восьмеричной (табл. 3.6) и шестнадцатеричной (табл. 3.7) системах счисления.

Таблица 3.5

Умножение в троичной системе счисления

Таблица 3.6

Умножение в восьмеричной системе счисления

Таблица 3.7

Умножение в шестнадцатеричной системе счисления

Рассмотрим алгоритм умножения многозначного числа на однозначное.

Чтобы в системе счисления с основанием q получить произведение М многозначного числа А и однозначного числа b, надо вычислить произведения b и цифр, образующих число А по разрядам i справа налево:

• если ai • b < q, то mi = ai • b, старший (i + 1)-й разряд не изменяется;
• если аi • b ≥ q, то mi = аi • b mod q, старший (i + 1)-й разряд увеличивается на ai • b div q (где div — операция целочисленного деления).

Примеры:

Умножение многозначного числа на многозначное число выполняется столбиком. При этом два множителя располагаются один под другим так, чтобы разряды чисел совпадали (находились в одном столбце).

Если один из множителей или оба множителя оканчиваются нулями, то числа записываются так, чтобы в одном столбце оказались их самые младшие разряды с цифрами, отличными от нуля. Нули переносятся в итоговое произведение, а в поле записи поэтапных произведений не заносятся.

Поэтапные (разрядные) произведения складываются по разрядам и под чертой записывается результат.

Примеры:

Cкачать материалы урока

Ссылка на основную публикацию
Adblock
detector