Формула нахождения периметра равнобедренной трапеции

Формула нахождения периметра равнобедренной трапеции

Периметр фигуры это длина всех ее сторон. Не все фигуры имеют периметр, например, шар не имеет периметра. Стандартное обозначение периметра в математике — буква P

Периметр треугольника

Периметр квадрата

Пусть длина стороны квадрата равна a . Квадрат имеет четыре равных стороны, поэтому периметр квадрата есть P = a + a + a +a или:

Периметр прямоугольника

Пусть длины сторон прямоугольника равны a и b .
Длина всех его сторон есть P = a + b + a + b или:

Периметр параллелограмма

Пусть длины сторон параллелограмма равны a и b
Длина всех его сторон есть P = a + b + a + b , поэтому периметр параллелограмма есть:

Как видно, периметр параллелограмма равен периметру прямоугольника.

Периметр ромба

Периметр равнобедренной трапеции

Пускай длины параллельных сторон трапеции a и b , а длины двух других сторон равна c (Как известно, равнобедренная трапеция имеет две равные стороны).

Периметр равностороннего треугольника

Как известно, равносторонний треугольник имеет 3 равные стороны. Если длина стороны равна a , тогда формула нахождения периметра есть P = a + a + a

Длина окружности(периметр круга)

Обозначим длину окружности буквой l .

$l = d cdot pi = 2cdot r cdot pi$

Где:
$pi = 3,14$
r радиус круга (окружности)
d диаметр круга.

Правильный многоугольник

n число ребер(вершин).
$pi = 3,14159265359$

Трапе́ция (от др. -греч. τράπέζιου — «столик» ; τράπεζα — «стол, еда» ) — четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна. Иногда трапеция определяется как четырёхугольник, у которого произвольная пара противолежащих сторон параллельна, в этом случае параллелограмм является частным случаем трапеции

Периметр произвольной трапеции

Периметр произвольной трапеции, в которой AB=a , BC=b , CD=c , AD=d , имеет вид:

[ LARGE P_ = a + b + c + d ]

где:
P — периметр трапеции
a, b, c, d — стороны трапеции

Периметр равнобокой трапеции

Равнобедренная трапеция — это трапеция у котрой боковые стороны равны.

Периметр произвольной трапеции, в которой AB=CD=a , BC=b , AD=c , имеет вид:

[ LARGE P_ = 2 cdot a + b + c ]

где:
P — периметр трапеции
a, b, c, d — стороны трапеции

Читайте также:  Сортировка в обратном порядке python

Признаки равнобедренной трапеции

Трапеция будет равнобедренной если выполняется одно из этих условий:

1. Углы при основе равны: ∠ABC = ∠BCD и ∠BAD = ∠ADC

2. Диагонали равны: AC = BD

3. Одинаковые углы между диагоналями и основаниями: ∠ABD = ∠ACD , ∠DBC = ∠ACB , ∠CAD = ∠ADB , ∠BAC = ∠BDC

4. Сумма противоположных углов равна 180°: ∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

5. Вокруг трапеции можно описати окружность

Также можно найти периметр трапеции, не зная длин оснований, но имея среднюю линию m . Средняя линия по определению представляет собой полусумму оснований трапеции, поэтому умножив ее на два, можно подставить ее вместо оснований в формулу периметра: ( P = 2 cdot m + c + d ) .

Прежде, чем приступить к расчету периметра трапеции, необходимо дать определение понятиям «периметр» и «трапеция», а так же изучить виды трапеций.

Периметр – это сумма длин всех сторон геометрической фигуры.

Так же в литературе имеется определение, согласно которому периметр – это длина линии, ограничивающей прямоугольную фигуру.

Трапеция – четырехугольник, две стороны которого параллельны (основания трапеции), а две другие стороны.

Виды трапеций

  • равнобедренная;
  • прямоугольная.

Если боковые стороны трапеции равны, трапеция называется равнобедренной.

В случае, когда одна из боковых сторон оказывается перпендикулярной основаниям – трапеция прямоугольная.

Определение периметра равнобедренной трапеции

Периметр равнобедренной трапеции определяется по формуле:

Периметр ABCD = a+b+c+d=2*a+b+d , где a, c – длина боковых сторон; b, d – длина сторон, являющихся основаниями.

Таким образом, если стороны равнобедренной трапеции равны – а=с=4см, b=5см, d=6см, периметр составит 19 см.: Периметр ABCD = 2*4+5+6=19 см.

Определение периметра прямоугольной трапеции

Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:

Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.

  • опустим высоту из вершины С, высота CH = AB = 5см;
  • исходя из рисунка 3, AH = BC = 7 см;
  • HD = AD – AH = 10 – 7 = 3 см;
  • далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
  • подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.
Читайте также:  Веб камера logitech c270 драйвер официальный сайт

Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:

  • формула расчета длины основания через среднюю линию;
  • формулы длин сторон через высоту и угол при нижнем основании трапеции;
  • формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
  • формулы длин сторон равнобедренной трапеции через площадь.

Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.

Ссылка на основную публикацию
Adblock detector