Среднеквадратичная скорость теплового движения молекул газа

Среднеквадратичная скорость теплового движения молекул газа

Так как , то, следовательно, …(11.12)

где – кинетическая энергия всех молекул газа.

Массу газа можно выразить как , тогда (12.12) запишется как ; для одного моля газа, то есть m = M, а V = V

, отсюда

Так как молярную массу можно выразить через массу одной молекулы m и число Авогадро — , то квадратичную скорость можно представить как

где — постоянная Больцмана.

При комнатной температуре молекулы кислорода, например, имеют среднеквадратическую скорость 480м/с, водорода – 1900м/с.

6. Средняя кинетическая энергия поступательного движения молекул газа.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа – она пропорциональна термодина-мической температуре и зависит только от нее, то есть температура тела есть количественная мера энергии движения молекул, из которых состоит это тело. Кроме того, связи между абсолютной температурой и средней кинетической энергией показывает, что при одинаковой температуре средние кинетические энергии молекул всех газов одинаковы, несмотря на различие масс молекул разных газов.

Кинетическая энергия газа состоящего из молекул, равна

, то есть , отсюда , где — концентрация молекул, тогда

Раскаленная током нить расположена на оси двух имеющих общую ось цилиндров. Нить покрыта серебром., атомы которого

испаряясь, покидают нить и по радиусу разлетаются в разные

стороны. Во внутреннем цилиндре сделана узкая щель. Только

те атомы, которые попали в щель, достигают внутренней

поверхности внешнего цилиндра, они создают изображение щели, которое можно увидеть, если через некоторое время развернуть внутреннюю поверхность большого цилиндра. Если прибор привести во вращение вокруг общей оси, то атомы серебра, прошедшие сквозь щель, будут оседать не прямо напротив него, а с некоторым смещением. Если бы всех молекул серебра была одинакова, то и это смещение было бы одинаковым, но опыт показал распределение по скоростям.

Читайте также:  Corsair vs 650w cp 9020051 eu

Существует некая скорость

около которой расположе-

ны наиболее населенные

интервалы, она называется

наиболее вероятной скоро-

стью Uв и ей соответству-

ет максимум на рисунке.

Чем больше скорость частиц отличается от Uв, тем меньше число таких частиц. С увеличением возрастает наиболее вероятная скорость, больше появится быстрых частиц, вся кривая сместится вправо. Однако площадь под кривой остается постоянной (так как постоянно число частиц), кривая растягивается. Сама кривая называется: распределение Максвелла молекул по скоростям.

Применив методы теории вероятностей, Максвелл нашел функцию распределения по скоростям f (1)

Значение наиболее вероятной скорости можно найти, продифференцировав (1):

(2)

Средняя скорость молекул определяется по формуле:

(3)

Таким образом, состояние газа характеризуется следующими скоростями:

1) наиболее вероятная

2) средняя

3) Средняя квадратичная

Исходя из распределения молекул по скоростям можно определить функцию распределения молекул по энергиям теплового движения

(4)

В физике выделяют 2 скорости, характеризующие движение молекул: средняя скорость движения молекул и средняя квадратичная скорость.

Средняя скорость движения молекул

Средняя скорость движения молекул называется также скоростью теплового движения молекул.

Формула средней относительной скорости молекул в физике представлена следующим выражением:

» open=» υ o t n = 2 8 k T πm 0 = 2 » open=» υ .

Средняя квадратичная скорость

Средняя квадратичная скорость движения молекул газа это следующая величина:

» open=» υ k υ = 1 N ∑ i = 1 N υ i 2

Формулу средней квадратичной скорости можно переписать так:

» open=» υ k υ 2 = ∫ 0 ∞ υ 2 F υ d υ .

Проводя интегрирование, аналогичное интегрированию при получении связи средней скорости с температурой газа, получаем:

» open=» υ k υ = 3 k T m 0 = 3 R T μ

Именно средняя квадратичная скорость поступательного движения молекул газа входит в состав основного уравнения молекулярно-кинетической теории:

p = 1 3 n m 0 » open=» υ k υ ,

где n = N V – это концентрация частиц вещества, N – это количество частиц вещества, V – это объем.

Необходимо определить, как изменяется средняя скорость движения молекул идеального газа с увеличением давления в процессе, изображенном на графике (рисунок 1 ).

Запишем выражение для средней скорости движения молекул газа следующим образом:

» open=» υ = 8 k T πm 0

Из графика видно, что p

ρ или p = C ρ , где C – это некоторая константа.

m 0 = ρ n , p = n k T = C ρ → k T = C ρ n

Подставив m 0 = ρ n , p = n k T = C ρ → k T = C ρ n в » open=» υ = 8 k T πm 0 , получаем:

» open=» υ = 8 k T πm 0 = 8 C ρ π n n ρ = 8 C π

Ответ: В процессе, представленном на графике, с увеличением давления средняя скорость движения молекул не меняется.

Можно ли найти среднюю квадратичную скорость молекулы идеального газа, если известно: давление газа ( p ) , молярная масса газа ( μ ) , а также концентрация молекул газа ( n ) ?

Применим выражение для » open=» υ k υ :

Читайте также:  Asus zenbook s ux391

» open=» υ k υ = 3 R T μ

Помимо этого, из уравнения Менделеева-Клайперона и зная, что m μ = N N A :

p V = m μ R T = N N A R T .

Поделим правую и левую части p V = m μ R T = N N A R T на V , и зная N V = n , получаем:

p = n N A R T → R T = p N A n

Подставляем p = n N A R T → R T = p N A n в выражение для среднеквадратичной скорости » open=» υ k υ = 3 R T μ , получаем:

» open=» υ k υ = 3 p N A μ n

Ответ: По заданным в условии задачи параметрам среднеквадратичная скорость движения молекул газа вычисляется при помощи формулы » open=» υ k υ = 3 p N A μ n .

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. Распределение молекул воздуха по скоростям

Принято считать, что все молекулы идеального газа двигаются с одинаковой скоростью, которую назвали средней квадратичной.

Средняя квадратичная скорость – это скорость, равная корню квадратному из средней арифметической величины квадратов скоростей отдельных молекул; она несколько отличается от средней арифметической скорости молекул.

,

где

К чему приводит наличие скорости у молекул газа, можно увидеть из эксперимента, для которого понадобится песок (моделирует молекулы газа) и пластинка из бумаги (моделирует сосуд, в котором находится газ). При высыпании песка пластинка под давлением песчинок отклоняется (см. Рис. 2). Точно так же и молекулы газа оказывают давление на стенки сосуда, в котором они находятся.

Рис. 2. Отклонение пластинки под действием давления песка

Рассмотрим график зависимости давления газа на стенки сосуда от времени (см. Рис. 3). На нём видно, что если молекул было бы мало, то наблюдались бы отклонения, так как в какой-то момент в стенку могло бы ударить разное количество молекул, и это ощутимо поменяло бы давление. Но так как в реальности молекул огромное количество, то давление всё время остаётся постоянным.

Рис. 3. График зависимости давления газа на стенки сосуда от времени

Можно сделать вывод, что скорость – это величина, которая характеризует отдельную молекулу, а давление имеет смысл только для большого числа молекул (понятие «давление одной молекулы» совершенно бессмысленно).

Микропараметры и макропараметры

Параметры, которые характеризуют каждую молекулу по отдельности, принято называть микропараметрами. К ним относятся:

а) – скорость отдельной молекулы;

б) – масса молекулы;

в) – размеры молекулы;

г) – импульс.

Параметры, которые характеризуют газ в целом, без детализации на отдельные молекулы, называют макропараметрами. К ним относятся:

б) n – концентрация (число частиц в единице объёма);

в) V – объём газа;

г) – средняя квадратичная скорость;

д) T – температура.

Именно макропараметры измеряются измерительными приборами.

Применение модели идеального газа

Модель идеального газа оказалась настолько универсальной, что физики применяют её не только для газов, подобных воздуху, но и для электронного газа в металле, для излучения электромагнитных волн и даже для звуковых колебаний в кристаллах. Теория идеального газа позволяет оценить давление и температуру внутри звёзд, результаты таких оценок близки к полученным строгими расчётами.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Домашнее задание

  1. Идеальным газом называется…
  2. Объясните своими словами содержания понятия «идеальный газ».
  3. Какие макропараметры, характеризующие газ, Вы знаете?
  4. Что такое средняя квадратичная скорость?
  5. Каким ещё способом можно продемонстрировать наличие скорости у молекул газа?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

«>

Ссылка на основную публикацию
Adblock detector