Треугольник в пространстве называется

Треугольник в пространстве называется

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Читайте также:  Как восстановить доступ в вк без фото

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

S = a · b · с
4R
S = p · r

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Что ты хочешь узнать?

Ответ

Проверено экспертом

1) Как называется и обозначается треугольник?

Треугольник называется по обозначениям его вершин. Вершины обозначаются заглавными латинскими буквами. Например, ΔKLM.

2) Что называют периметром треугольника?

Периметр треугольника — это сумма длин всех его сторон.

3) Какие существуют виды треугольников в зависимости от вида их углов?

Остроугольный, прямоугольный, тупоугольный.

4) Какой треугольник называют прямоугольным? Тупоугольным? Остроугольным?

Прямоугольным называют треугольник, в котором есть прямой угол. Тупоугольный треугольник — это треугольник с тупым углом. Остроугольный треугольник — это треугольник, в котором все углы острые.

Читайте также:  Что за файлы lost dir

5) Какие два треугольника называют равными?

Треугольники равны, если их можно совместить наложением.

6) Как называют те пары сторон и пары углов равных треугольников, которые совмещаются при наложении?

7) Какие две фигуры называют равными?

Две фигуры равны, если их можно совместить наложением.

8) Что называют высотой треугольника?

Высота треугольника — это перпендикуляр, проведенный из вершины к противоположной стороне или ее продолжению.

9) Что называют медианой треугольника ?

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

10) Что называют биссектрисой треугольника?

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину и точку на противоположной стороне.

А биссектриса угла — это луч с началом в вершине угла, который делит угол пополам.

11) Сколько у каждого треугольника высот? Медиан? Биссектрис?

В каждом треугольнике можно провести три высоты, три медианы и три биссектрисы.

Определение треугольника

В любом треугольнике три угла и три стороны.

Против большего угла треугольника лежит большая сторона.

Виды треугольников

  • остроугольными (если все его углы острые),
  • тупоугольными (если один из его углов тупой),
  • прямоугольными (если один из его углов прямой).
  • равнобедренным, если две его стороны равны.
  • равносторонним, если все три стороны равны,
  • разносторонним, если все его стороны разные.

Основные линии треугольника

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектрисой угла треугольника называется луч, исходящий из вершины треугольника и делящий его пополам.

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону (или ее продолжение).

Средняя линия треугольника – это отрезок, соединяющий середины двух сторон треугольника и параллельный третьей стороне.

Два треугольника называются равными, если у них равны соответствующие стороны и соответствующие углы.

Признаки равенства треугольников

I признак (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Читайте также:  Dolby atmos как установить

II признак (по стороне и прилежащим углам). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

III признак (по трем сторонам). Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Подробнее про признаки равенства треугольников читайте по ссылке.

Признаки подобия треугольников

Треугольники называются подобными, если их стороны пропорциональны.

I признак. Если два угла одного треугольника раны двум углам другого треугольника, то такие треугольники подобны.

II признак. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то такие треугольники подобны.

III признак. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Подробнее про признаки подобия треугольников читайте по ссылке.

Теоремы треугольников

Для любого треугольника справедливы следующие теоремы.

Подробнее про теорему косинусов читайте по ссылке.

Подробнее про теорему синусов читайте по ссылке.

Примеры решения задач

Задание Доказать, что в равнобокой трапеции диагонали равны.
Доказательство В равнобокой трапеции рассмотрим треугольники и (рис. 1). Так как – общая сторона, то треугольники и равны по первому признаку, а значит, равны все их элементы, т.е. .

Что и требовалось доказать.

Задание В треугольнике стороны см см см. На стороне отмечена точка так, чтобы см. Найти отрезок .
Решение Рассмотрим треугольники и . Запишем отношение сторон и :

Так как выполняется равенство отношений, то соответствующие стороны треугольников пропорциональны, а также – общий угол. Следовательно, треугольники и – подобны (по второму признаку подобия). Найдем сторону :

откуда см.

Ссылка на основную публикацию
Adblock detector