Управляющий сигнал 4 20 ма

Управляющий сигнал 4 20 ма

Создавая систему автоматизации для того или иного технологического процесса, мы так или иначе вынуждены как-то сопрягать датчики и другие сигнальные устройства — с исполнительными устройствами, с преобразователями, с контроллерами и т. д. Последние, как правило, принимают сигнал от датчика в форме напряжения или тока определенной величины (если речь об аналоговых сигналах), или в форме импульсов с определенными временными параметрами (в случае с цифровыми сигналами).

Параметры этих электрических сигналов должны неким вполне определенным образом соответствовать параметрам физической величины, которую фиксирует датчик, чтобы управление конечным устройством получилось бы адекватным задаче автоматизации.

Безусловно, удобнее всего унифицировать аналоговые сигналы от различных датчиков, дабы контроллеры обрели универсальность, чтобы пользователю не приходилось бы для каждого датчика подбирать свой индивидуальный вид интерфейса, а для каждого интерфейса — свой датчик.

Пусть характер сигналов ввода-вывода станет унифицированным — решили разработчики, ведь при таком подходе процессы разработки систем автоматизации и блоков автоматики для промышленности сильно упростятся, а устранение неисправностей, обслуживание и модернизация оборудования станут значительно гибче. Даже если один датчик выйдет из строя, то вовсе не придется искать точно такой же, достаточно будет подобрать аналог с соответствующими выходными сигналами.

Измерения температуры среды, оборотов двигателя, давления в жидкости, механического напряжения образца, влажности воздуха и т. д. — зачастую осуществляется путем обработки непрерывных аналоговых сигналов, получаемых с соответствующих датчиков, при этом автоматически корректируется непрерывная работа сопряженного устройства: нагревательного элемента, частотного преобразователя, насоса, пресса и т. д.

В качестве аналогового сигнала наиболее часто служит либо сигнал напряжения, изменяющийся в диапазоне от 0 до 10 В, либо токовый сигнал, изменяющийся в диапазоне от 4 до 20 мА.

Управление напряжением от 0 до 10 В

Когда используется унифицированный сигнал напряжения от 0 до 10 В, то этой непрерывной последовательности напряжений от 0 до 10 В ставится в соответствие последовательность измеряемых физических величин, например давлений или температур.

Скажем, температура изменяется от -30 до +125°С, при этом напряжение изменяется от 0 до 10 В, причем 0 вольтам соответствует температура в -30°С, а 10 вольтам +125°С. Это может быть температура реагента или обрабатываемой детали, причем промежуточные значения температуры будут иметь строго определенные значения напряжения из обозначенного диапазона. Зависимость здесь не обязательно линейна.

Таким образом можно осуществлять управление различными устройствами, а также получать информацию для мониторинга. Например, радиатор с термодатчиком имеет аналоговый выход для отображения текущей температуры: 0 В — температура поверхности радиатора +25°С или ниже, 10 В — температура достигла +125°С — максимально допустимой.

Или подавая от контроллера напряжение от 0 до 10 В на аналоговый вход насоса, задаем давление газа в контейнере: 0 В — давление равно атмосферному, 5 В — давление равно 2 атм, 10 В — 4 атм. Подобным образом можно управлять нагревательными приборами, двигателями станков, клапанами и прочей арматурой и приводами различного назначения.

Управление током (токовая петля от 4 до 20 мА)

Второй вид унифицированного аналогового сигнала для управления автоматикой — токовый сигнал 4-20 мА, называемый «токовой петлей». Данный сигнал используется так же для получения сигналов от различных датчиков с целью управления исполнительными устройствами.

В отличие от сигнала напряжения, токовый характер сигнала позволяет передавать его без искажений на значительно большие расстояния, поскольку падения напряжений на линиях и на сопротивлениях автоматически компенсируются. Кроме того очень проста диагностика целостности передающих цепей — если ток есть, значит линия цела, если тока нет — имеет место обрыв. Именно по этой причине наименьшее значение 4 мА, а не 0 мА.

Итак, здесь в качестве источника энергии управляющего сигнала используется источник тока, а не источник напряжения. Соответственно, контроллер исполнительного устройства должен иметь токовый вход 4-20 мА, а преобразователь датчика — токовый выход. Допустим, имеется у частотного преобразователя управляющий токовый вход 4-20 мА, тогда при подаче на вход сигнала 4 мА или менее — управляемый привод остановится, а при подаче тока в 20 мА — разгонится на полные обороты.

Между тем, токовые выходы датчиков могут быть как активными, так и пассивными. Чаще выходы пассивные, это значит, что необходим дополнительный источник питания, который включается последовательно в цепь с датчиком и контроллером исполнительного устройства. Для датчика или контроллера с активным выходом — источник питания не потребуется, так как есть встроенный.

Аналоговая токовая петля используется сегодня в инженерной практике чаще, чем сигналы напряжения. Она может использоваться на расстояниях до нескольких километров. Для защиты оборудования применяется гальваническая развязка на оптоэлектронных приборах, например оптронах. Из-за неидеальности источника тока, максимально допустимая длина линии (и максимальное сопротивление линии) зависит от напряжения, от которого питается источник тока.

Читайте также:  Excel зависимость одной ячейки от другой

Например при типичном напряжении питания 12 вольт сопротивление не должно превышать 600 Ом. Диапазоны токов и напряжений описаны в ГОСТ 26.011-80 "Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные".

Средство унификации первичного сигнала — нормирующий преобразователь

Для унификации первичного сигнала с датчика — для преобразования его в напряжение от 0 до 10 В или в ток от 4 до 20 мА, — применяют так называемые нормирующие преобразователи. Такие нормирующие преобразователи выпускаются для датчиков температуры, влажности, давления, веса и т. д.

Принцип работы датчика может быть разным: емкостный, индуктивный, сопротивления, термопара и т.д. Однако выход для удобства дальнейшей обработки сигнала должен соответствовать требованиям унификации. Вот почему датчики зачастую оснащаются нормирующими преобразователями измеряемой величины в ток или в напряжение.

При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.

Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.

Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.

В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!

Унифицированные аналоговые сигналы

С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).

Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.

В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.

Унифицированный сигнал напряжения 0-10 В

При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

Управление сигналом 0-10 В

С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести трёхходовой клапан в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

  • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
  • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

Управление сигналом 4-20 мА

Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.

Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.

Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.

Активный и пассивный аналоговый выход 4-20 мА

Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.

Читайте также:  Пропал значок переключения языка в виндовс 7

На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.

Нормирующий преобразователь

При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

Так выглядит датчик температуры с нормирующим преобразователем:

В статье рассматривается компактное и экономичное решение по гальваническому разделению сигналов 4…20 мА в системах измерения и управления.


Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим преобразователям сигналов температурных датчиков*, измерительным преобразователям напряжения и тока**, частоты***, мощности****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим преобразователям НПСИ-УНТ, которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Применение унифицированных сигналов регламентировано ГОСТ 26.011. Стандарт устанавливает их допустимые диапазоны, а также вводит ограничения на величину сопротивлений источников и приемников этих сигналов. Если ряд отечественных унифицированных сигналов дополнить сигналами, которые широко используются иностранными производителями средств автоматизации, то получится обширное множество сигналов напряжения 0…1, 0…2,5, 0…5, 0…10, –1…1, –10…10 В и сигналов тока 0…5, 0…20, 4…20, –20…20 мА. Это означает, что в системе, вполне вероятно, будут присутствовать датчики и приборы с различными типами аналоговых сигналов. Они хоть и будут унифицированными, но будут разными. Это значит, что датчик не будет стыковаться со вторичным измерительным прибором, а управляющий прибор не сможет управлять исполнительным механизмом. В системах с десятками или даже тысячами сигналов такая ситуация возникает просто неизбежно. Особенно остро проблема стоит в тех случаях, когда ядром системы является контроллер измерительно-управляющей системы (ИУС), который в целях удешевления и унификации работает с одним типом унифицированного сигнала. В современных контроллерах таким сигналом чаще всего является ток 4…20 мА.

Картину взаимодействия контроллера, который работает с одним типом сигнала 4…20 мА, с самыми разнообразными датчиками и исполнительными устройствами иллюстрирует рис. 1. Задачу согласования устройств с различными типами сигналов как раз и призваны решать нормирующие преобразователи сигналов.


Рис. 1. Согласование сигналов в многоканальных измерительно-управляющих системах ИУС: под воздействием электромагнитных наводок удаленные приборы находятся под разными потенциалами

На рис. 1 показаны канал 3 на входе и канал 2 на выходе, в которых ни тип сигнала, ни его диапазон не изменяются, и тем не менее установлен нормирующий преобразователь. Дело в том, что в данных каналах нормирующие преобразователи решают еще одну задачу – гальваническое разделение цепей. Необходимость гальванического разделения возникает прежде всего в тех случаях, когда многоканальная измерительная система работает с неизолированными источниками сигналов, находящимися под разными потенциалами. Как известно, в промышленных условиях даже заземленные источники, но расположенные на некотором удалении друг от друга, находятся под разными потенциалами частотой 50 Гц, обусловленными электромагнитными наводками от силовых цепей (рис. 1). Гальваническая развязка решает эту проблему: она полностью устраняет влияние разности постоянных потенциалов и значительно подавляет переменные наводки частотой 50 Гц.

Кроме того, гальваническое разделение предохраняет измерительные цепи и от высокочастотных помех, которые вызваны короткими импульсами тока в силовых цепях. Такие импульсы возникают при работе сварочных аппаратов, индукторов, частотных преобразователей, тиристорных коммутаторов, а также при грозовых разрядах.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
— на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
— токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
— обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
— токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Читайте также:  Profig os можно ли удалить

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе нормирующих преобразователей, обеспечивающих гальваническое разделение сигналов токовой петли 4…20 мА. В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП – выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Преобразователи НПСИ-ГРТП предназначены для выполнения всего лишь двух основных функций:
— измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
— гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность – 0,005 % / °C. Рабочий диапазон температур – от –40 до +70 °C. Напряжение изоляции – 1500 В. Быстродействие – 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.


Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику

Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками – вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками – исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого НПФ КонтрАвт, не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: НПСИ-ГРТП1, НПСИ-ГРТП2 и НПСИ-ГРТП4. Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный – в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. Преобразователи НПСИ-ГРТП в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей – «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» – не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.


Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных – разъемными винтовыми соединителями.


Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________
*Нормирующие преобразователи сигналов // ИСУП. 2010. № 3.
**Нормирующие преобразователи действующих значений напряжения и тока // ИСУП. 2012. № 3.
***Методы измерения и преобразования частотно-временных параметров сигналов // ИСУП. 2013. № 3.
****Измерительные преобразователи мощности нагрузки в однофазной сети // ИСУП. 2015. № 5.

Статья опубликована в журнале «ИСУП», № 6(66)_2016

Ссылка на основную публикацию
Adblock detector