Ускорение свободного падения формула через высоту

Ускорение свободного падения формула через высоту

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести. Для этого движения справедливы формулы:

Если:
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота с которой падает тело,
t — время, в течение которого продолжалось падение,
То, свободное падение описывается следующими формулами:

Ускоре́ние свобо́дного паде́ния на пове́рхности [1] некоторых небесных тел, м/с 2 и g

Земля 9,81 м/с 2 1,00 g Солнце 273,1 м/с 2 27,85 g
Луна 1,62 м/с 2 0,165 g Меркурий 3,68—3,74 м/с 2 0,375—0,381 g
Венера 8,88 м/с 2 0,906 g Марс 3,86 м/с 2 0,394 g
Юпитер 23,95 м/с 2 2,442 g Сатурн 10,44 м/с 2 1,065 g
Уран 8,86 м/с 2 0,903 g Нептун 11,09 м/с 2 1,131 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта [2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах [3] . Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80666 м/с² [4] [5] . Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².

Содержание

Физическая сущность [ править | править код ]

Для определённости будем считать, что речь идёт об ускорении свободного падения на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центростремительного ускорения, связанного с вращением Земли.

Центростремительное ускорение [ править | править код ]

Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, центростремительное ускорение равно ω 2 a , где ω — угловая скорость вращения Земли, определяемая выражением ω = 2π/T , в котором Т — время одного оборота вокруг своей оси (звёздные сутки), равное для Земли 86164 секунды. Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с 2 , причем на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Читайте также:  Материнская плата asus a68hm k socket fm2

Гравитационное ускорение [ править | править код ]

Гравитационное ускорение на различной высоте h над уровнем моря

h , км g, м/с 2 h , км g, м/с 2
9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связано с его массой M следующим соотношением:

g = G M r 2 <displaystyle g=G<frac <2>>>> ,

где G — гравитационная постоянная (6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 ) [6] , а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрично. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо наоборот по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

g ( h ) = G M ( r + h ) 2 <displaystyle g(h)=<frac <(r+h)^<2>>>> , где M — масса планеты.

Ускорение свободного падения на Земле [ править | править код ]

Ускорение свободного падения у поверхности Земли зависит от широты, времени суток, атмосферного давления и других факторов. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле [7] [8] :

g = 9,780 318 ( 1 + 0,005 302 sin 2 ⁡ φ − 0,000 006 sin 2 ⁡ 2 φ ) − 0,000 003086 h , <displaystyle g=9<,>780318(1+0<,>005302sin ^<2>varphi -0<,>000006sin ^<2>2varphi )-0<,>000003086h,> где φ <displaystyle varphi > — широта рассматриваемого места, h <displaystyle h> — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли, дополнив её поправками, связанными с вращением Земли, приливными воздействиями и другими факторами.

Читайте также:  B1 двоичное кодирование чисел ответы

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счет центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от следствий из этой упрощённой модели. Так, самое низкое значение g зафиксировано на горе Уаскаран в Перу (9,7639 м/с²) в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от северного полюса [9] .

Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Алматы 76,85 в.д. 43,22 с.ш. 786 9.78125
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80188
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801
Читайте также:  Как варить полуавтоматом впервые кузов автомобиля

Измерение [ править | править код ]

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.

Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние или опустилось на высоту h

g ≈ 9,8 м/с 2 — ускорение свободного падения

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с 2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с 2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

Ссылка на основную публикацию
Adblock detector